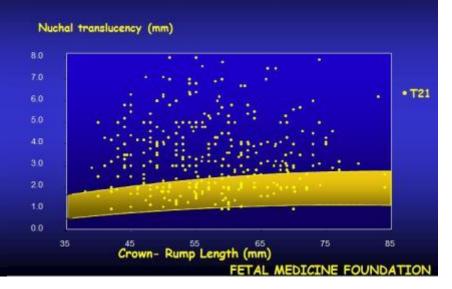


Fetal nuchal translucency: the Sardinia experience

> Giovanni Monni Vietnam, March 2011

NUCHAL TRANSLUCENCY (11- 13.6 wks)


Transonic space behind the fetal neck

ENLARGED NUCHAL TRANSLUCENCY And TRISOMY 21

Szabo, Lancet 1991 Nicolaides, Br Med J 1992

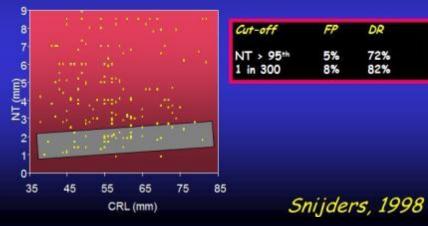
NUCHAL TRANSLUCENCY and TRISOMY 21

NUCHAL TRANSLUCENCY ENLARGED

NUCHAL TRANSLUCENCY SCREENING

MULTICENTRE PROJECT (UK)
27 CENTRES; Trisomy 21 - 326 cases

Chromosomopathies


Trisomy 21

Cardiopathies

Structural anomalies

Genetic syndromes

NUCHAL TRANSLUCENCY IN GENERAL POPULATION

Study	Cut-off	n. Fetuses	Tris 21 DR
Bewley	≥ 3mm	1368	33%
Kornman	≥ 3mm	923	29%
Taipale	≥ 3mm	10010	54%
Hafner ≥ 2 ,	5mm 4233	4.	3%
Orlandi	Delta value	744	57%
Pajkrt	≥ 3mm	1473	67%
Theodoropoulos	>95°	3550	91%
Snijders	>95°	96127	72%
Total		118428	70%

NT: THE TECHNIQUE

NUCHAL TRANSLUCENCY IN SARDINIA AT THE OSPEDALE MICROCITEMICO -CAGLIARI

RESULTS OF MEASUREMENT OF NT BEFORE AND AFTER TRAINING

	Before training 1995	After training 1996 -97
Number of operators	4	4
Number of patients	1176	1037
CRL (mm)	17-85	38-84
Techniques	Not Standard	Snijders
Cut off	≥3mm	(1) ≥1 in 300 (2) ≥1 in 100
Detection rate of chrom.abnorm.	30%	(1) 84% (85%*) (2) 76% (77%*)

Monni, Lancet 1997

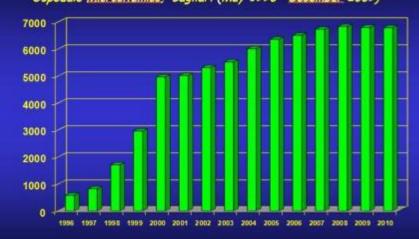
SINCE 1996.....

A sonographic marker as a screening tool requires the development of a precise protocol, proper operator training, certification, auditing of performance and recertification

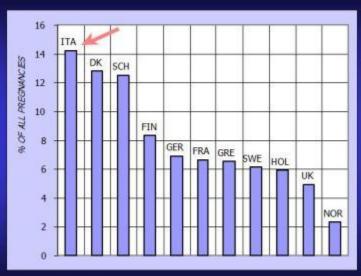
PRENATAL DIAGNOSIS FOR ANEUPLOIDIES IN ITALY

- Maternal age >35
- Previous affected fetus
- Abnormal karyotype in the parents
- Odds to be affected by Down syndrome greater than or equal to 1/250 calculated by biochemistry or ultrasound paraments

Decree of Health Minister 1998


MATERNAL AGE AT DELIVERY IN THE LAST 5 YEARS IN ITALY

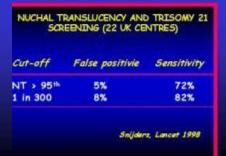
	Up to 24	25- 29	30-34	35-39	40 and	Total
	Years	Years	Years	Years	over	
North	7,8%	26%	44,1%	19,1%	3%	100%
North- East	8,1%	29,1	40,9%	18,7%	3,2%	100%
Center	6,7%	26,1	40,8%	20,5%	6%	100%
South	14,7%	33,9	34,2%	14,6%	2,6%	100%
Sicily and Sardinia	18,2%	33,1	30,7%	14,7%	3,3%	100%
Total	10,9%	29,7	38,5%	17,4%	3,5%	100%


Italian Institute of Statistics, 2002

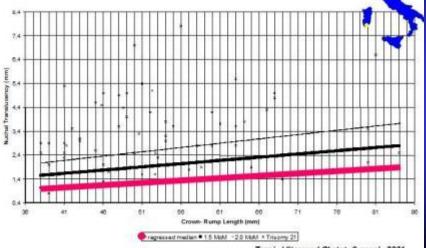
SCREENING FOR DOWN SYNDROME BY NUCHAL TRANSLUCENCY (66,000 cases)

Ospedale Microcitemico, Cagliari (May 1996 - December 2009)

INVASIVE TESTING RATE in EU



Tabor, Brahms Symposium ISUOG Paris 2003

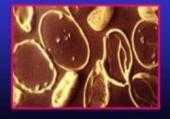

NUCHAL TRANSLUCENCY SCREENING
OSPEDALE MICROCITEMICO (12,495 SINGLETON FETUSES)

Fetal Karyotype		Estimated r	isk
	>1 in 300	>1 in 200	>1 in 100
Normal (n=10,001)	887 (9%)	607 (6%)	318 (3%)
Trisomy 21 (n=64)	58 (90%)	53 (83%)	49 (77%)

Zoppi, Ultrasound Obstet Gynecol 2001

FETAL NUCHAL TRANSLUCENCY SCREENING IN 12,495 PREGNANCIES IN CAGLIARI

Zoppi, Ultraound Obstet Gynecol, 2001


PATIENT'S ACCEPTABILITY BETWEEN 1st TRIM. NT SCREENING AND 2nd TRIM. BIOCHEMICAL SCREENING

Patients (No)	500
·1st trimester NT choice	496
•2 nd trimester Triple test choice	-
·Not answer	4

Monni, Lancet 1998

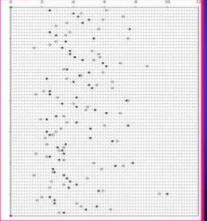
CHROMOSOMAL ABNORMALITIES IN β-THALASSAEMIA PATIENTS (maternal age < 35 yrs.)

Karyotype	Maternal Age	Test
Trisomy 21	34	pos
Turner	30	pos
Turner	31	pos

Monni, Prenat. Diagn. 1999

CHANGES OF ENLARGED NT AT 11- 14 WEEKS 1st measure

2nd measure in the same fetus


2 MEASUREMENTS IN THE SAME FETUS AT 11- 14 WITH ENLARGED NT

2° NT >/=

56% Chromosomopathies

25% Normal fetuses

Zoppi Br J Obstet Gynaecol 2003

Zoppi, Obstet Gynecol 2001

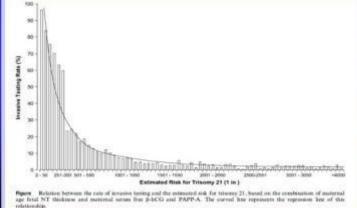
NUCHAL TRANSLUCENCY TEST IN WOMEN AGED 35 AND OLDER

Could Decrease the Demand for Invasive **Prenatal Diagnosis**

Could Lead to an Earlier Invasive Diagnosis of Chromosomopathies by CVS

Zoppi, Obstet Gynecol 2001

Obstetrics & Gynecology


NT AND THE ACCEPTANCE OF INVASIVE PRENATAL **DIAGNOSIS IN WOMEN AGED 35 AND OLDER**

Group	1995	1999
Patients	982	1386
Decision against prenatal diagnosis	(221**(22%)	421**(30%)
Prenatal diagnoses	690	916
Median maternal age	38	37
Transabdominal- CVS	214 (31%)	266 (29%)
Amniocentesis	476 (69%)	650 (71%)
Chromosomal abnormalities	19	20
Chrom. abnorm. diagnosed by TA-CVS	6**(31.5%)	(13**(65%))
Chrom. abnorm. diagnosed by AC	13 (68.5%)	7 (35%)

After NT test

Chi- squared test: p< 0.05

Evidence-based obstetric ethics and informed decision-making by pregnant women about invasive diagnosis after first-trimester assessment of risk for trisomy 21 Rypnes St. Nicelaides, * Frank A. Chervensk, MD, *- * Laurence B. McCollough, PhS: Ryrtaki Anglidou, * Arts Papageorghicu*

NT screening TEST

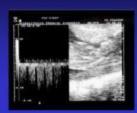
Enhances patients autonomy and allow them to make appropriate decision, providing a more informed and rationale basis for deciding whether to resort to more definitive testing

Treadwell, Ultrasound Obstet Gynecol 2006

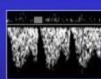
OF NT TEST

- · Doppler velocimetry in the ductus venosus
- Nasal bone evaluation

NUCHAL TRANSLUCENCY



- It should be performed only if requested by the woman
- It should be performed only by trained operators, with periodical audit control
- The accuracy of the nuchal translucency should be clearly explained to the woman
- The result of the test should indicate the estimated risk for trisomy 21, by considering ultrasound, maternal age and maternal history


1ST TRIMESTER ULTRASOUND GUIDELINES ITALIAN SOCIETY OF ULTRASOUND IN OB/GYN (SIEOG) 2002

ATRIAL CONTRACTION VELOCITY (ACV) IN THE DUCTUS VENOSUS

ACV present

ACV absent

ACV reverse

FIRST TRIMESTER DUCTUS VENOSUS VELOCIMETRY IN RELATION TO NUCHAL TRANSLUCENCY THICKNESS

NT Thickness	Fetuses	DV measured	ACV+	ACV-
≥95 th centile	156	152	93 (61%)	59 (39%)
<95™ centile	174	173	171 (98%)	2 (1%)
Total	330	325	264 (81%)	61 (19%)

DV= Ductus Venosus

ACV+ = Presence of forward velocity during atrial contraction

ACV- = Absence or inverted forward velocity during atrial contraction

Zoppi, Fetal Diagn Ther 2002

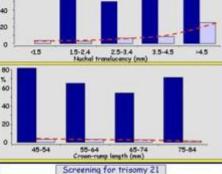
FIRST TRIMESTER DUCTUS VENOSUS VELOCIMETRY IN RELATION TO NUCHAL TRANSLUCENCY THICKNESS AND FETAL KARYOTYPE

Chromosomal abnormality	No.	ACV+	ACV-
Trisomy 21	20	6	14
Trisomy 18	8	1	6
Trisomy 13	1		1
45, X0	3	2	1
Triploidy	1	1	
Other	1		1
Total	34	10 (30%)	23 (70%*)

All these chromosomal abnormalities had a NT \geq 95th centile. In a case of tris. 18 with estrophia cordis, it was not possible to carry out the measurement of DV


*10% in normal karyotype fetuses

DV= Ductus Venosus


ACV+ = Presence of forward velocity during atrial contraction ACV- = Absence or inverted forward velocity during atrial contraction

Zoppi, Fetal Diagn Ther 2002

Ductus venosus at 11-13+6 wks

Trisomy 21 n=77

Nicolaides et al. 2008

Normals n=12,769

NASAL BONE AT FIRST TRIMESTER BY ULTRASOUND

ABSENT NASAL BONE AND TRISOMY 21

NASAL BONE AT 11- 14 WEEKS GESTATION

	Normal Karyotype	TRISOMY 21
Present Nasal Bone	600 (99.5%)	16 (29.6%)
Absent Nasal Bone	3 (0.5%)	43 (72.8%)
Total	603	59

Absence of nasal bone was independent of NT thickness Absent Nasal Bone Likelihood Ratio for Trisomy 21 was 146 and for present Nasal Bone 0.27

Cicero and Nicolaides, Lancet 2001

ABSENCE OF NASAL BONE AND DETECTION OF TRISOMY 21

Cagliari, September - November 2001

	Fetuses	TRISOMY 21	Other
Present Nasal Bone	875	1	1**
Absent Nasal Bone	5***	2***	
Total Fetuses	880	3	1

Trisomy 18 Screen Positive Rate 0.5% Sensitivity 66.6%

NASAL BONE AND TRISOMY 21 AT 15T TRIMESTER IN 5,425 UNSELECTED PREGNANCIES

(5,532 fetuses)

September 2001 - September 2002

	Fetuses	TRISOMY 21	
Present Nasal Bone	5,491 (99.4%)	8 (30%)	
Absent Nasal Bone	34 (0.6%)	19 ⁸⁶⁸ (70%)	
Total Fetuses	5,525**	27	

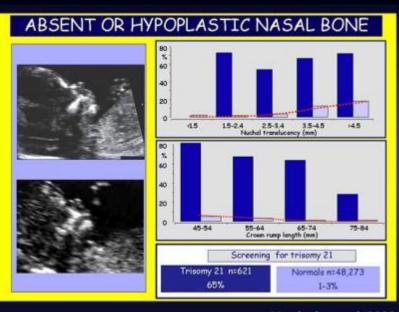
5,525 fetuses: visualization of the fetal profile (99,8%) 2 fetuses of Trisomy 21 with absent NB and normal NT Fetal karyotype and pregnancy outcome available in 3,503 pregnancies Median maternal age 32 years

Monni, Lancet 2002

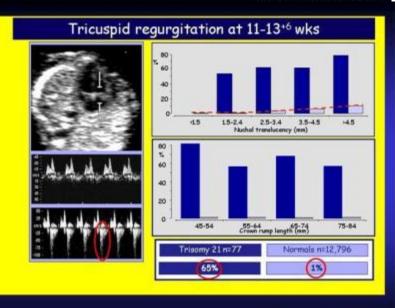
Zoppi, Prenat Diagn 2003


FETAL NASAL BONE AND OTHER CHROMOSOMOPATHIES AT 11- 14 WEEKS IN AN UNSELECTED POPULATION IN CAGLIARI

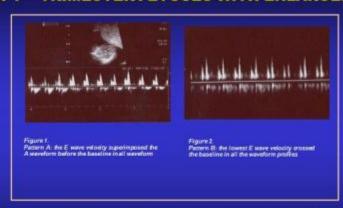
September 2001 - September 2002


N.	Maternal age	CRL	NT	Karyotype	Nasal bone
	35	54.5	2.5	47, XXX	Present
	35		1.7	47.xy.lsh+der(13.18)(q14.ig22/mat(mtp13+;wcp18+)	Present
			2.5	47, XY-13	Present
	30			47,XY+13	Present
	96	50		45, 30	Present
			6.8		
		48	4.1		
		63.5			
10	38		8.1		
11		58			
	39	45		47, XX +18	Present
13	30	54	3.5		

ENALRGED NT AND TRICUSPIDAL REGURGIATIOM IN CASE WITH ABNORMAL KARYOTYPE



- Tricuspidal regurgitation (TR) has been found in about 30% of cases with enlarged nuchal translucency (NT)
- When NT is enlarged and TR is present, there is a chromosomal abnormality in 80% of cases
 Huggon 2003

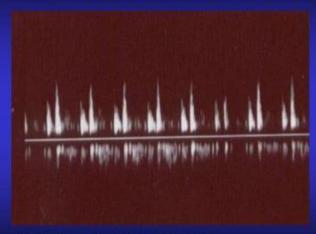


Nicolaides et al. 2008

Nicolaides et al. 2008

LEFT ATRIOVENTRICULAR VALVE SPECTRAL DOPPLER LEFT ATRIOVENTRICULAR VALVE SPECTRAL DOPPLER IN 1ST TRIMESTER FETUSES WITH ENLARGED NT IN 1ST TRIMESTER FETUSES WITH ENLARGED NT

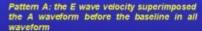
Evaluation of left atrioventricular valve Doppler in trisomy 21 fetuses with enlarged NT shows more frequently a specific pattern (type B), that may be suggestive of an altered myocardial function.

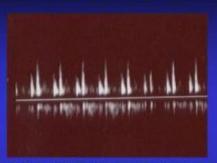

7 1 1 1 1 1 1 1 1

Pattern A: the E wave velocity superimposed the A waveform before the baseline in all

Zoppi, Ultrasound Obstet Gynecol 2006

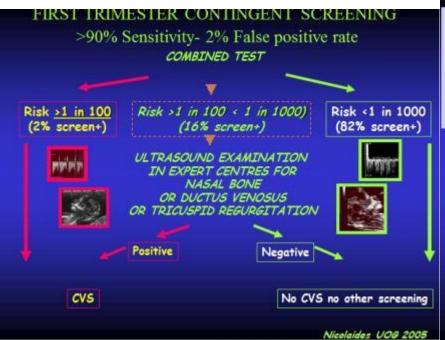
LEFT ATRIOVENTRICULAR VALVE SPECTRAL DOPPLER IN 1ST TRIMESTER FETUSES WITH ENLARGED NT


Pattern B: the lowest E wave velocity crossed the baseline in all the waveform profiles


Zoppi, Ultrasound Obstet Gynecol 2006

Zoppi, Ultrasound Obstet Gynecol 2006

LEFT ATRIOVENTRICULAR VALVE SPECTRAL DOPPLER IN 1ST TRIMESTER FETUSES WITH ENLARGED NT



Pattern B: the lowest E wave velocity crossed the baseline in all the waveform profiles

Left AV Doppler in trisomy 21 fetuses with enlarged NT shows more frequently (70% V5 6%) pattern type B

Zoppi, Ultrasound Obstet Gynecol 2006

(Her S. A. et al. (1997) (1997) 28 - 117 - 118 | Portrait Disease in Wiley Intervention of the information of the informatio

Nuchal translucency measurement at different crown-rump lengths along the 10- to 14-week period for Down syndrome screening

Maria A. Zoppi, Rosa M. Ibba, Marcella Floris, Fabida Manca, Carolina Astana and Giovanni Monni-Disconnect, CCC carrier and Economics Prompts and Prompts and Control Discount Field Printers Adjustin

Group	Sensitivity	95th C1	Specificity	95th Cl	LR	95th CI
38-44 mm	86.7%	62.1-96.3	89.3%	87.6 to 90.7	8.1	6.3 to 10.3
45-54 mm	71.2%	60.0~80.3	95.0%	94.5 to 95.3	14.1	11.9 to 16.7
55-70 mm	80.6%	65.0-90.2	95.0%	94.5 to 95.5	16.3	13.4 to 19.3
71-84 mm	62.5%	30.6-86.3	99.4%	95.1 to 97.3	17.1	9.3 to 31.5
All	75.0%	67.0-81.6	94.6%	94.3 to 94.9	14	12.5 to 15.

Table 4-Sensitivity, specificity, likelihood ratio (LR) for Down syndrome (NT >/= 2.0 MoM cut- off)

Group	Sensitivity	95th CI	Specificity	95th CI	LR	95th CI
38-44 mm 45-54 mm 55-70 mm 71-84 mm	80% 63.0% 66.7% 50.0 65.2%	54.8-92.9 51.5-73.2 50.33-79.8 21.5-78.5 56.7-72.7	94.0% 97.7% 98.7% 99.4% 97.8%	92.6 to 95.0 97.4 to 97.9 98.4 to 98.9 98.8 to 99.7 97.6 to 98.0	13.2 27.1 50.1 84.1 30.0	9.6 to 18.2 21.9 to 33.5 36.9 to 68.1 30.5 to 231.5 25.7 to 35.1

A TEST MORE SENSIBLE......

(NT MEASURED AT THE BEGINNING OF THE 11- 14 WEEKS PERIOD)

 35 year- old (or more aged) woman with a traditional indication for invasive prenatal diagnosis for karyotype analysis, that would like to perform a more informed choice....

A MORE SPECIFIC TEST

(NT MEASURED AT THE END OF THE 11- 14 WEEKS PERIOD)

Woman with infertility problems, precious pregnancy.

When the priority is to avoid any risk of complicance of an unnecessary invasive procedure performed on a probably healthy fetus.....

10 11 12 13 14

weeks

TRANSABDOMINAL FETAL CARDIAC EXAMINATION IN CASES WITH ENLARGED NT FOR CHROMOSOMAL ABNORMALITY SCREENING

	All	Chromosomal abnormalities	Normal karyotype
Fetuses with NT enlarged	202	47 (23%)	155 (77%)
Median CRL	59.5 mm		
TA heart US "not normal"	40 (18%)	26 (55%)	15 (10%)

Zoppi et al, ISUOG Annual Congress 2006

IN THE SAME WOMAN IN DIFFERENT PREGNANCIES

	All fetuses	Normal karyotype
Fetuses	38,164	
Enlarged NT	1,749 (5%)	1,503 (4%)
NT enlarged in more than one pregnancy		23 (8.8%)

Zoppi et al, ISUOG Annual Congress 2006

CHROMOSOMAL ABNORMALITIES AND NT IN 115 MULTIPLE PREGNANCIES (252 FETUSES)

Chromosomal abnormalities	Maternal age	Pregnancy	NT
Trisomy 21	39	dichorionic	>95 th
Trisomy 21	33	tetrachorionic	>95 th
47, XXY	37	trichorionic	<95 th

Monni, Croat Med J 2000

NT AND EMBRYO REDUCTION AT 11 WEEKS OF GESTATION IN QUADRUPLETS

	Fetus 1	Fetus 2	Fetus 3	Fetus 4
CRL (mm)	44.7	44.2	45.8	44.4
NT (mm)	0.7	0.9	2.3	0.9
Estimated risk	1 in 1809	1 in 1830	1 in 210	1 in 1806
Karyotype	46, XY*	46, XX *	47, XX +21	* 46, XY**

^{*} AF at 15 weeks

Monni, Ultrasound Obstet Gynecol 1999

^{**} AF and FBS at 11 weeks before ER

Ultraround Citate Council (2008, 10: 121-121)
Published sallon in Wiley Interference (were assessment with council DOR 10.1002/page 4214

Editorial

Second-trimester sonographic soft markers: what can we learn from the experience of first-trimester nuchal translucency screening)

T. K. LAU* and M. I. EVANSE

*Manural Ital Madeire Ven, Department of Universal and Granicology, The Chrone Uniments of Hong Energy Hong Energy or and Cubindardicals adults and Food Madeires Francisco of America, Computationary Connects and Mr. Stock Edited of Madeires, NY, USA

Effort should be focused on:

- The development of a well-defined protocol for the evaluation of these few strong markers, including how to do it, when to do it, and who should do it
- The development of an algorhytm for incorporating these markers into existing screening programs
- The confirmation of their efficacy as screening markers by large prospective studies in an unselected population

18named Otto Concel 200, 32 (23-22) Feblokal salas in Wity Intelvens: (vers autocines mity con). BOL 10.2002/aug 6134

Editorial

Second-trimester sonographic soft markers: what can we learn from the experience of first-trimester nuchal translucency screening)

T. K. LAU* and M. L EVANS!

*Material Feld Medicine Unit, Department of Chargenes and Commissings, The Charact University of Mong Ening, Hong Ening or well suit inhabits about a seal of Feed Medicine Foundation of America, Companionate Country and Mr. Sane School of Medicine, NY, 1762

It should be remembered that

- · A service without quality is worse than no service at all
- The screening procedure should not be merely a test but must be a comprehensive program
- The basic principle of Medicine "First do not harm" should always be observed