INTRAUTERINE GROWTH RESTRICTION (IUGR): Diagnosis and Management

Ivica Zalud, MD, PhD, FACOG, FAIUM Professor John A Burns School of Medicine University of Hawaii, Honolulu, USA

Ian Donald Vietnam Ho Chi Minh City March 10-11, 2011

IUGR

- Nomenclature: low birth weight, small for gestational age, retarded fetal growth, small for dates, intrauterine growth restriction
- Definition:
 - IUGR is defined as a birth weight less than the 10th percentile (? 5th percentile or ?>2SD below the mean) at given gestational age.
 - The fetus has not reached its growth potential at given gestational age due to one or more causative factors.
- Infant weight is the single most important factor affecting neonatal mortality!

OBJECTIVES:

- Define IUGR vs. SGA fetuses
- Recognize etiology
- Describe the role of ultrasound
- Discuss antenatal natural history
- Present antepartum and intrapartum management
- Discuss short and long term sequelae

2

IUGR: So what!

- 2nd leading contributor to perinatal mortality!!!
- Perinatal mortality: x6-10
- Intrapartum asphyxia: up to 50%
- As many as 40% stillborns are IUGR
- A portion of perinatal complications is preventable (morbidity and mortality)
- Association with <u>multiple sequelae</u> (short and long term morbidity)

.

INCIDENCE

- 10% of general obstetric population
- 4-7% of all infants born in developed countries
- 6-30% of all infants born in developing countries

IUGR

The fetus genetically programmed to be in the 90th percentile who is born in the 20th percentile may be in more trouble than a baby born to a jockey and a gymnast who is in the 8th percentile!

-

Fetal factors

- Chromosomal abnormalities (2-5%)
 - Trisomy 13, 18, 21
 - Genetic syndromes (Turner Sy)
 - Chromosomal deletions
 - Uniparental disomy
 - Confined placental mosaicism

Fetal factors

- Structural malformations
 - Anencephaly
 - Omphalocele / gastroschisis
 - Diaphragmatic hernia
 - Renal agenesis / dysplasia
 - Cardiac malformations
 - Multiple malformations
 - Osteogenesis imperfecta

Fetal factors

- Multiple gestation
 - Monochorionic placentation
 - Single anomalous fetus
 - Twin-to-Twin Transfusion syndrome (TTTS)

Fetal factors

- Fetal infections
 - Rubella
 - CMV
 - Varicella-zoster
 - Listeria
 - Syphilis
 - Malaria
 - Toxoplasmosis

40

Placental factors

- Abnormal trophoblast invasion
- Placental infarction
- Abruption
- Vascular malformation
- Velamentous cord insertion
- Placenta previa
- Circumvallate placenta
- Chrioangioma

Maternal factors

- Constitutional factors
 - Race
 - Height / weight
- Nutritional factors
 - Poor pregnancy weight gain
 - Low pregnancy weight
 - Inflammatory bowel disease
 - Chronic pancreatitis
 - Gastrointestinal surgeries

Maternal factors

- Hypoxic conditions
 - Severe lung disease
 - Cyanotic heart disease
 - Sickle cell anemia
- Vascular problems
 - Chronic hypertension
 - Pre-eclampsia
 - Collagen vascular disease
 - Type I diabetes mellitus
 - Antiphospholipid syndrome
- Renal disease
 - Glomerulonephritis
 - Renal transplant
 - Chronic renal failure

Maternal factors

- Environmental factors:
 - High altitude
 - Cigarette smoking
 - Alcohol
 - Illicit drugs: narcotics
 - Medications: anti-epileptics, beta blockers
- Past obstetric history
 - Previous stillbirth
 - Previous IUGR
 - Previous preterm delivery

14

SONOGRAPHIC FINDINGS

AC measurements most sensitive (liver size) - >2.5th percentile – sensitivity >95%)

- Error of measurements: up to 20%
- Recommend: serial measurements

SONOGRAPHIC FINDINGS

- 3D measurements
 - Fetal thigh (Chang et al. 1997)
 - EFW Error: 0.7%
- Detailed anatomical survey
- Oligohydramnios
- Fetal aneuploidy (amnio, PUBS)

SONOGRAPHIC FINDINGS

- Doppler studies
 - Arterial: UA, MCA
 - Venous: IVC, DV
 - Semi quantitative measurements:
 - Waveform analysis: RI, S/D, PI
 - Absent end-diastolic flow
 - Reversed end-diastolic flow

Doppler in IUGR fetuses

The Doppler effect

Umbilical circulation

- Low impedance circulation
- S/D Standard index
- Placental insertion has leas impedance
- Intervene for absent or reverse EDF

This is an advanced stage of fetal compromise, associated with increased perinatal morbidity and mortality.

Umbilical Artery Doppler Meta-analyses

- Absent or reversed EDF 80x increase in perinatal mortality (*Thornton 1993*)
- UA Doppler significantly reduces IUFD
 - Divon 1995: 8 studies, 6838 Pts
 - Giles 1993: 6 studies, 4335 Pts
 - Alfirevic 1995: 12 studies, 38% reductions in perinatal mortality

22

The Circle of Willis

Left and right MCA

Cerebral Circulation

- High impedance circulation
- PI Standard measurement index
- Hypoxia results in increased flow to the brain
- Brain sparing effect (brain, heart, adrenals, spleen)

24

DV Doppler

IVC Doppler

Coronal view of fetal chest and abdomen

Uterine circulation

- Low impedance circulation in pregnancy
- S/D, RI Standard indices
- Low EDF & notching are abnormalities
- Abnormal waveforms: IUGR, preeclampsia, FHR abnormalities

IUGR Challenge

- Diagnose true IUGR
- Identify markers of morbidity
- Intervene in a timely fashion

Does Doppler improve outcomes in IUGR fetuses?

- It can, when used in conjunction with other diagnostic tools.
- Early compensatory phase (fetal hypoxia):

 Biometry & arterial Doppler
- Late phase (fetal acidosis and impending cardiovascular collapse):
 - Venous Doppler, FHR analysis & BPP

Fetal Surveillance

- Risk of NRFS is 86% when both umbilical
 MCA Dopplers are abnormal
- Risk of NRFS is 4% when both umbilical &
 MCA Dopplers are normal

Ultrasound Obstet Gyencol 2002;19:225

20

DIFFERENTIAL DIAGNOSIS

- Incorrect pregnancy dating
- SGA fetus
- Error of measurements

TIMELINE FOR FETAL HYPOXIA

- Abnormal fetal growth
- Abnormal arterial Doppler (UA, MCA)
 - -~ 2 weeks
- Abnormal venous Doppler (IVC & ductus venosus)
 - -~ 1-2 days??
- Abnormal NST / BPP score

33

PREGNANCY MANAGEMENT

- The crux of management; hazards of prematurity vs. threat of IUFD
- Referral to maternal fetal medicine subspecialist targeted ultrasound and counseling
- Search for etiology: fetal, placental, maternal
- Fetal karyotype (2-5% abnormal Creasy & Resnik 1999)
- NST, BPP, CST, UA Doppler
- Serial biometry (q 3-4 weeks) watch head growth

PREGNANCY MANAGEMENT

- 37 or more: prompt delivery
- <34 weeks:</p>
 - Expectant management if reassuring fetal status – course of corticosteroids for fetal benefits
 - Modified bed rest, smoking cessation, Rx hypertension (Lin & Santolaya-Forgas 1999)
 - Antepartum testing: NST/AFI & BPP twice weekly, daily kick counts, UA Doppler
 - Abnormal UA Doppler: daily NST and at least twice weekly BPP for up to 2 weeks
 - Non-reassuring status: prompt delivery

34

36

PREGNANCY MANAGEMENT

- 34-37 weeks
 - Management individualized
 - Fetal lung maturity study delivery if mature
 - Expectant management till 37 weeks than delivery (Craigo et al. 1996)
 - Antepartum testing: NST/AFI twice weekly, UA Doppler
 - Non-reassuring status: prompt delivery
 - Oligohydramnios and abnormal UA Doppler: more frequent antepartum testing but not delivery (unless non-reassuring status)

PREGNANCY MANAGEMENT

- Mode of delivery
 - Based entirely on standard obstetric practice
 - No evidence to support routine C/S
 - Consideration for C/S if non-reassuring antepartum testing with an unfavorable cervix (*Creasy & Resnik* 1999)
 - Labor induction with or without cx ripening
 - Continuous electronic fetal monitoring
 - FHR monitor: Increased risk for decreased variability and late decelerations
 - Meconium
 - Optimum: Tertiary care centers with MFM and NICU available

- 96

LONG-TERM OUTCOME

- Depend on underlying cause
- Poor cognitive function
- Adverse neurological outcome in childhood
- Impaired gross motor development, hyperactivity, poor concentration, lower IQ, speech and reading disabilities (Gembruch & Gortner 1998)
- Cerebral palsy

LONG-TERM OUTCOME

- David Barker, epidemiologist from England
 - Fetal origin of adult diseases: The risk of coronary artery disease, stroke and hypertension
 - Intrauterine conditions could program development of the cardiovascular system later in life
 - Infants with birth weight less than 5.5 lb had a 3x increase in death due to coronary artery disease later in life.
- Other risks:
 - Abdominal obesity, type 2 diabetes mellitus, hyperlipidemia

KEY POINTS:

- of the all U/S derived biometric parameters, AC is the most sensitive indicator of IUGR and should be closely monitored in at-risk fetuses.
- Arterial Doppler abnormalities in UA and MCA confirm the presence of hypoxia in IUGR fetuses and are early warning signs.

KEY POINTS:

The most important abnormal findings to look for on UA Doppler are absent and reversed end-diastolic flow.

Note: The clinical use of venous Doppler in IUGR management should await the results of randomized trials.

. 4

KEY POINTS:

- In managing IUGR pregnancies, timing of delivery is the most critical step.
- The challenge is to balance the risk of prematurity with the risk of IUFD, neonatal morbidity and mortality and long term neurodevelopmental delay.

FUTURE

Randomized studies will shed more light on the pathophysiology of IUGR and on the various interactions of diagnostic tools in fetal surveillance.

